PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Domain size in the presence of random fields
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We consider the size of domains formed in ordered systems in the presence of quenched random fields. We
argue that below the critical dimension, the domain size shows a nonmonotonic dependence on the correlation
length of the random field. If the random field is slowly varying in space, the order parameter follows the field,
and the domain size is comparable to the correlation length. If the field is rapidly varying, the domain size
becomes larger than the correlation length, and diverges as the correlation length of the random field goes to
zero.[S1063-651X%98)01001-7

PACS numbdss): 05.50+4q, 75.10-b

In a classic paperl], Imry and Ma showed that even at the field term in Eq(2) is ~—1, while the average value of
zero temperature, long range order is destroyed by the prethe squared gradient term is(l4/)2. If {/1;>1, the field
ence of arbitrarily weak random fields if the spatial dimen-term dominates, and hence in this regime the domainlsize
sion is less than some critical value. They note that the enis comparable to the correlation length That is, for all
ergy cost of domain walls for domains of sikeis ~L9"2  spatial dimensionsl,
for systems with continuous symmetry, such as the Heisen-
berg model, and-L%"* for systems with discrete symmetry,
such as the Ising model, whetkis the spatial dimension, £~£ it l>1 &)
while the energy gain from the random field-sL%2. Thus lo o o=
the formation of domains and the loss of long range order

occurs ifd<4, in systems with continuous symmetry, and i
d<2 in systems with discrete symmetry. In this paper welf /o<1, the order parameter cannot follow the field and

extend this argument, and consider the dependence of the™ ¢- In this case the average free energy density is
domain size on the correlation length of the random field. A
great deal of work has been done on the influence of L\ a2
quenched disorder on critical behavi@-6]. Here we con- ]::<|:—|=0>z|(2)|_—2—(—) & Ml (4)
centrate on the ground state configuration. ¢

We assume the free energy density to be of the form

where (/¢)%? is the number of correlated regions in a do-
main of sizeL wherehy~1. Minimizing F with respect to
L gives

F=Fo+x(V¢)?—Hy, oY)

where ¢ is the dimensionless order parametef order

unity), « is an elastic constant, ardl is a random field with

correlation lengthl. The order parameter can be of a general L (4) 2/(4d)( g)d/(d4)
lo |

type, andH ¢ denotes the inner product in order parameter =lg if  {lpy<1. (5)
space. In dimensionless form, the free energy density be-

comes

lo

In this regime, thereford,~¢?/4~4) and the domain size
F=Fo+15(V)2—hy, (20 diverges asi—0. Physically, the correlation length cannot
be less tham/2 wherea is a lattice constant, thus the maxi-
wherel, ~H ™ 2is a coherence length, amdis the random mum domain size L mas=lo(@/l)) Y@ 9~HZE=4) is the
field normalized so thath?)=1. For systems with continu- |mry-Ma length[6]. The asymptotic behavior is, from Egs.
ous symmetry, the meaning of coherence lengtis that the  (3) and (5),
field cannot produce deformations of the order parameter on
length scales shorter théyn We show below that the depen-
dence of the domain sideon ¢ is nonmonotonic, and differs L [(g\¥e ¢
in the regimes/l,>1 and{/l,<1. To determine the ground =\, T ©®)
state, we minimize the total free energy, or equivalently, the
average free energy density, with respect to the domain
sizel. Thus the domain size is comparable to the correlation length
We consider first systems with continuous symmetry,0f the random field if{/1,>1, but diverges ford<4 as
such as the Heisenberg model or nematic liquid crystals. IFo(2/10) Y@ if /1,<1. Ford=4, the free energy is mini-
the order parameter follows the field, the contribution frommized whenL—o if {/15<1.

lo
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A similar argument follows for the case of discrete sym-

metry, such as the Ising model. If the order parameter fol-

lows the field, the contribution from the field term in E§)

is again~—1, while the average value of the squared gra-

dient term is~|§/(a§), wherea is the lattice constant. The
lattice constant enters here since the wall thickness as
the coherence length in this casdjs=13/a. If ¢/I;>1, the

field term dominates, and hence in this regime the domair
size is expected to be comparable to the correlation Iengthg

That is, for alld,

it ¢lg>1. (7)

If £/15<1, the order parameter cannot follow the field and

L>¢. In this case the average free energy density is

%) d/2§dL_d.

Minimizing F with respect taL gives

E

The asympotic behavior is then, from Eqg) and(9),

|

F=lgL =1~ (8)
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FIG. 1. Domain size vs correlation length of random field in
arbitrary units. The coherence lendthincreases with decreasing
field strength.

with the argument of Imry and M&L] and more heuristic
arguments presented elsewhgtg]. It is interesting to note
that, in the regime/l,<<1, Eq. (6) gives the Larkin length
[13] for the flux lattice in the presence of random pinning
centers if the correlation length is identified asaZp/d,
wherep is the number density of pinning centers. There is no
analog of the regimé/l,>1 in Ref.[13]. By contrast, some
experiments on liquid crystals in porous mefa-11] indi-

cate that the domain side~ ¢, if the correlation length is

Thus the domain size is comparable to the correlation lengtiflentified as the pore size, as predicted by E8).in the

of the random field if{/1;>1, but diverges ford<2 as
lo(2110)Y@=2)if ¢/1>1. Ford=2, the free energy is mini-
mized whenL — if ¢/1{<1.

The behavior of domain size as a function of the cor-
relation length{ of the random field is shown in Fig. 1 for
various values of the coherence lenggifor the continuous
symmetry case wherg=3. The dependence of the domain
sizeL on random field correlation length and coherence
lengthlo~H 2 is different in the regimes wherg/l,<1
and wherel/lg>1.

As the strength of the field increaségdecreases, and the

regime {/1,>1. Other experiments on liquid crystdlg,8]
show domain sizes that are much larger than the pore size. In
confined superfluidHe, correlation lengths of the order pa-
rameter, both smaller and larger than the pore size, have been
measured14—-14. Although experiments on the above sys-
tems are consistent with the predictions of E&).in differ-

ent regimes, we are not aware of any one experiment clearly
showing the predicted crossover behavior. Monte Carlo
simulations with uncorrelated random fields3,17] indicate
order parameter correlation lengths well in excess of the lat-
tice spacing. Numerical simulations to study the dependence
of domain size on correlation length of the random field are

crossover regime moves to shorter length scales.

In summary, we have argued that if the random field iscurrently under way.
slowly varying in space compared to the coherence length, We acknowledge useful discussions with O. Lavrentov-
the domain size is comparable to the correlation length of théch, N. A. Clark, D. Finotello, M. Gingras, and R. K. P. Zia.
random field. When the field is rapidly varying, however, theThis work was supported in part by the AFOSR under Grant
domain size becomes large, and approaches the Imry-Mso. F49620-95-1-006%W.E.) and the NSF under ALCOM
length, which diverges as the strength of the random fieldsrant No. 89-DMR20147 and AFOSR MURI Grant No.
goes to zero. This divergence of domain size is consisterff49620-17-1-0014.
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